Исчезнувший гений Рудольф Дизель — создатель дизельного двигателя.


История создания дизельного двигателя.

Дизельный двигатель

Для начала напомним, что дизельный двигатель – это уникальный механизм, направленный на получение энергии внутреннего сгорания. Спектр используемого топлива для дизелей очень широк, и включает в себя даже растительные варианты горючего (масла и жир).

Предпосылкой для создания дизельного двигателя стала идея цикла Карно (1824 г.), которая заключалась в процессе теплообмена с максимальным КПД на выходе. Более современный вид эта идея получила в 1890 году, когда знаменитый Рудольф Дизель создал практический образец реализации цикла Карно, а в 1892 году, он уже получил патент на создание данного вида двигателя. Первый действующий образец движка был создан Дизелем в начале 1897 года, а в конце января он уже подвергся испытаниям.

В начале своего пути, дизельный двигатель значительно уступал паровому в плане размеров, и не имел успеха в практическом применении. Первые образцы двигателей работали исключительно на легких нефтепродуктах и маслах. Но были попытки запускать двигатель и на угольном топливе, что повлекло за собой полный провал, из-за проблем с подачей угольной пыли в цилиндры.

Дизельный двигатель

В 1898 году, в Петербурге также был сконструирован двигатель, который по своему принципу был полностью схож с дизельным. В России данный тип механизма получил название «Тринклер-мотор», который по своим характеристикам, согласно испытаниям, был гораздо более совершенным, чем немецкий аналог. Преимуществом «Тринклер-мотора» стало использование гидравлики, которая значительно улучшала показатели по сравнению с воздушным компрессором. Плюс, сама конструкция была в разы проще и надежнее немецкой.

В том же 1898 году, Эммануил Нобель выкупил права на производство дизельного двигателя, который был усовершенствован, и работал уже на нефти. А на рубеже веков, гениальный российский инженер Аршаулов, изобрел уникальную систему – топливный насос высокого давления, что также стало прорывом в процессе усовершенствования дизельного двигателя.

В двадцатых годах 20-го века, немецкий ученый Роберт Бош провел еще одно усовершенствование топливного насоса высокого давления, а также создал уникальную конструкцию бескомпрессорной конструкции. С тех пор, дизельные двигатели начали получать массовое распространение, и использоваться в общественном транспорте и железной дороге, а 50-60-е годы, дизельные двигатели массово используются при сборке обычных пассажирских автомобилей.

Двигатель

Дизель сразу окунулся в работу. Первоначальная идея была такой: в цилиндры впрыскивают угольную пыль, воспламеняющуюся от тепла сжатия. Двигатель должен работать в соответствии с циклом Карно, то есть у него не будет внешнего охлаждения.

Уже при первой попытке Дизель обнаружил, что некоторые из его идей практически невыполнимы. Угольная пыль содержала минеральные частицы, оседавшие на поршневых кольцах и приводящие к катастрофическому абразивному износу цилиндров. Отсутствие внешнего охлаждения приводило к заклиниванию поршня в цилиндре.

Схема двигателя, нарисованная Дизелем Фото: Источник

Дизель — гений, он сразу же обнаружил недостатки разработки и предложил новый циклический процесс, носящий теперь его имя. Не буду утомлять читателя техническими подробностями, скажу лишь, что уже самый первый двигатель внутреннего сгорания, работавший согласно этому процессу, показал удивительные результаты.

Профессор Герлах и его ассистенты из Политеха в Мюнхене измерили эффективный коэффициент полезного действия (КПД) дизельного двигателя и получили поразительный результат: эффективный КПД нового двигателя составил почти 27%, в то время как у парового двигателя он был равен 3−5%, а у бензинового двигателя Отто — 10−12%.

Кроме того, дизельный двигатель работал на более дешевом и труднее воспламеняемом топливе.

Принцип работы дизельных двигателей.

Существуют два варианта работы дизелей:

  • Двухтактный цикл;
  • Четырехтактный цикл.

Наиболее популярен четырехтактный цикл работы дизельных двигателей: впуск (поступления воздуха в цилиндр), сжатие (в цилиндре сжимается воздух), рабочий ход (процесс сгорания топлива в цилиндре), выпуск (выход отработанных газов из цилиндра). Данный цикл является бесконечным, и постоянно повторяется с механической точностью в процессе работы двигателя.

Двухтактный цикл работы двигателя отличается укороченными процессами, где газообмен осуществляется в продувке, едином процессе работы механизма. Такие двигатели применяются в морских судах и железнодорожном транспорте. Двухтактные двигатели строятся исключительно с неразделенными камерами сгорания.

Рудольф Дизель и дизельный двигатель (стр. 1 из 2)

РУДОЛЬФ ДИЗЕЛЬ (1858-1913)

В истории техники известны имена таких изобретателей, как Т.А Эдисон, Н. Тесла, В.Г Шухов, которые подарили миру сотни идей и решений. У немецкого изобретателя Рудольфа Дизеля только одно детище, но зато такое, без которого сегодня не мыслим мир машин, — двигатель внутреннего сгорания с воспламенением от сжатия. Этому двигателю изобретатель отдал всю творческую жизнь. Двигатель носит имя своего создателя.

Ещё студентом Мюнхенской высшей политехнической школы Р. Дизель увлёкся идеей повысить кпд паровой машины.

Кпд самой совершенной тогда паровой машины выше 10% поднять не удавалось. Студента целиком захватила эта мысль. Она не оставила Р. Дизеля и тогда, когда он стал инженером. Но путь от теории к воплощению мечты оказался очень труден. На это ушли годы.

И, наконец, долгий мучительный труд увенчался успехом. В 1892 г. он получил патент на изобретённый им двигатель внутреннего сгорания.

Двигатель Дизеля четырёхтактный. Изобретатель установил, что кпд двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но слишком сильно сжимать горючую смесь нельзя: от сжатия она перегревается и вспыхивает раньше времени. Дизель решил сжимать не горючую смесь, а чистый воздух. И только к концу сжатия, когда температура достигла 600 – 650.С в цилиндр под сильным давлением впрыскивалось жидкое топливо. Конечно, оно немедленно воспламенялось, и газы, расширяясь, двигали поршень. Таким образом, Дизелю удалось значительно повысить кпд двигателя. К тому же здесь не нужна была система зажигания. Двигатель Дизеля очень экономичный, он работает на дешёвых видах топлива.

Впервые такой двигатель был построен в 1897 году.

К Дизелю пришла слава. Его двигатель внутреннего сгорания находил всё новое применение. Многие страны приглашали к себе изобретателя. В 1910 году Дизеля восторженно встречала Россия, несколько позже – Америка.

Но на родине изобретателя обвинили в том, что он пользуется незаслуженной славой, что его изобретение не ново. Дизель тяжело переживал эти нападки, стал, мрачен, много болел.

Обстоятельства гибели Дизеля трагичны. Сентябрьским днём 1913 года он сел на пароход, отправляющийся в Лондон. На утро Дизеля не нашли в каюте, он бесследно исчез.

Созданный Дизелем двигатель продолжает работать и совершенствуется. Дизели приводят в действие суда, тепловозы, автомобили, тракторы… и т.п. Эти двигатели используют также для привода электрогенераторов на тепловых электростанциях,

в качестве тяговых двигателей газо-турбовозов, большегрузных автомобилей и других

транспортных средств, в том числе кораблей, катеров и подводных лодок.

В1903 году К.Э Циолковский в своей статье «Исследование мировых пространств

реактивными приборами» впервые в мире описал основные элементы ракетных двигателей, которые являются разновидностью реактивного двигателя.

В1909 году русский инженер Н.Герасимов разработал схему первого в мире турбореактивного двигателя. Ныне большинство военных и гражданских самолётов называются реактивными потому, что на них установлены турбореактивные двигатели; эти двигатели устанавливают также и на больших вертолётах

Принцип действия реактивного двигателя основан на использовании силы реакции (отдачи) струи газов, вытекающий из сопла двигателя. Сила отдачи газовой струи заставляет двигатель перемещаться в пространстве в сторону, противоположную

истечению струи. В кинетическую (скоростную) энергию реактивной струи в реактивном двигателе могут преобразовываться в разные виды энергии (химическая, ядерная, электрическая, солнечная).

Реактивный двигатель сочетает в себе собственно двигатель с движителем, т.е. движет себя сам без участия промежуточных механизмов. Основная часть любого реактивного двигателя – камера сгорания. В ней в результате сгорания топлива образуют горячие газы. Вырываясь с большой скоростью из сопла, горячие газы создают реактивную струю, которая вызывает тягу двигателя и приводит в движение аппарат, на котором этот двигатель установлен.

Различают воздушно-реактивные двигатели и ракетные двигатели. В воздушно-реактивных двигателях в камеру сгорания кроме топлива подаётся воздух. Поэтому такие двигатели можно использовать лишь там, где плотность атмосферы достаточна, чтобы двигатель не «задохнулся». Ракетный двигатель не нуждается в воздухе: все необходимые компоненты топлива он несёт с собой. Поэтому такие двигатели хорошо работают в безвоздушном пространстве, т.е. в космосе. Их устанавливают главным образом на боевых ракетах и ракетах-носителях космических кораблей. Отсюда и название – ракетный двигатель. Для достижения нужной скорости на космических ракетах устанавливают 2, 3, а иногда и больше двигателей; такие многодвигательные ракеты называются двухступенчатыми и трёхступенчатыми. Отработает одна ступень со своим двигателем и отделяется от ракеты. Тотчас включается двигатель следующей ступени. Так продолжается до тех пор, пока ракета не достигнет заданной скорости полёта.

История развития техники, и особенно машинного производства, тесно связанно с созданием и совершенствованием двигателей. И каков бы не был двигатель – водяное колесо или газовая турбина, электродвигатель или дизель, он является машиной, преобразующий какой-либо вид энергии в механическую работу. Те двигатели, которые для получения механической работы используют природные энергетические ресурсы (топливо, поток воды, ветер и др.), называют первичными (например, паровая машина, гидротурбина, ветродвигатель.). Двигатели, преобразующие в механическую работу энергию первичных двигателей, называют вторичными (электрические, пневматические и др.). К двигателям относятся также устройства, способные накапливать механическую энергию, а затем по мере надобности отдавать её (инерционные, или маховиковые, пружинные и гиревые механизмы).

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ.

Один из самых распространённых двигателей – двигатель внутреннего сгорания (ДВС). Его устанавливают на автомобили, корабли, тракторы, моторные лодки и т.д., во всём мире насчитываются сотни миллионов таких двигателей. Существуют два типа двигателей внутреннего сгорания — бензиновые и дизели.

Бензиновые двигатели внутреннего сгорания работают на жидкостном топливе (бензине, керосине и т.п.) или на горючем газе (сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева). Проектируют двигатели, где горючим будет водород.

Основная часть ДВС – один или несколько цилиндров, внутри которых происходит сжигание топлива. Отсюда и название двигателя.

Внутри цилиндра скользит поршень – металлический стакан, опоясанный пружинящими кольцами (поршневыми кольцами), вложенные в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутки между поршнем и стенками цилиндра.

Поршень снабжён металлическим стержнем – пальцем, он соединяет поршень с шатуном. Шатун передаёт движение поршня коленчатому валу.

Верхняя часть цилиндра сообщается с двумя каналами, закрытыми клапанами. Через один из клапанов – впускной подаётся горючая смесь, через другой выпускной удаляются продукты сгорания. В верхней части цилиндра помещается свеча – приспособление для зажигания горючей смеси посредством электрической искры.

Наибольшее распространение в технике получил четырёхтактный двигатель. Рассмотрим его работу. 1-й такт – впуск (всасывание). Открывается впускной клапан. Поршень, двигаясь вниз, засасывает в цилиндр горючую смесь. 2-й такт – сжатие. Впускной клапан закрывается. Поршень двигаясь в верх, сжимает горючую смесь, при сжатии она нагревается. 3-й такт – рабочий ход. Поршень достигает верхнего положения. Смесь поджигается электрической искрой свечи. Сила давления газов – раскалённых продуктов горения – толкает поршень вниз. Движение поршня передаётся коленчатому валу, вал поворачивается, производится тем самым полезная работа. Производя работу и расширяясь, продукты сгорания охлаждаются, давление в цилиндре падает почти до атмосферного. 4-й такт – выпуск (выхлоп). Открывается выпускной клапан, отработанные продукты сгорания выбрасываются через глушитель в атмосферу.

Из 4 тактов двигателя только один, третий – рабочий. Поэтому двигатель снабжён маховиком, за счёт которых вал вращаются в течение остальных тактов. Отменим, что одноцилиндровые двигатели устанавливают главным образом на мотоциклах. На автомобилях, тракторах и т.п. для более равномерной работы ставят 4,6,8 и более цилиндров на общем валу. Двигатели с цилиндрами, установленными в виде звезды вокруг одного вала, получили название — звездообразных. Мощность звездообразных двигателей достигает 4 МВт. Используют их главным образом в авиации.

ДИЗЕЛЬ – другой тип двигателя внутреннего сгорания. В отличие от бензинового воспламенения в его цилиндрах происходит при впрыскивание топлива в воздух, предварительно сжатый поршнем и, следовательно, нагретый до высокой температуры.

Этот двигатель назвали по имени немецкого инженера Р. ДИЗЕЛЯ, построившего в 1897г. первый двигатель с воспламенением от сжатия – в этом и заключается его отличие от бензинового двигателя внутреннего сгорания, использующего особое устройство для воспламенения топлива.

Конструктивно дизель мало, чем отличается от бензинового двигателя внутреннего сгорания. На рисунке видно, что у него есть цилиндр, поршень, клапаны. Да и принцип действия дизеля такой же. Но есть и отличия: в головке цилиндра находится топливный клапан – форсунка. Назначение её – в определённые фазы вращения коленчатого вала впрыскивать топливо в цилиндр. Клапаны, топливный насос, питающий форсунку, получают движение от распределительного вала, который, в свою очередь, приводится в движение от коленчатого вала двигателя.

Пусть начальным положением поршня будет верхняя мёртвая точка. При движении поршня вниз (первый такт) открывается впускной клапан, через который в цилиндр засасывает воздух. Впускной клапан при обратном ходе поршня закрывается и в продолжение всего второго такта остаётся закрытым.

Преимущества и недостатки.

Мощность КПД современных дизелей составляет 40-45 %, а некоторых образцов – 50%. Несомненным плюсом таких двигателей являются низкие требования к качеству топлива, что позволяет использовать не самые дорогие нефтяные продукты для работы механизма.

Дизельный двигатель

При использовании дизелей в автомобилях, такой двигатель дает высокий вращающийся момент, при низких оборотах самого механизма, что делает авто комфортным в движении. Благодаря этому данный тип движка и популярен в промышленных автомобилях, где ценится мощь механизма.

Дизельные двигатели имеют гораздо меньшую вероятность возгорания, благодаря нелетучему топливу, что делает их максимально безопасными при эксплуатации. Именно дизельные двигатели стали залогом для прогресса военной бронированной техники, делая ее максимально безопасной для экипажа.

Недостатков у дизеля также хватает, и заключаются они в топливе, которое имеет свойство застаиваться в зимнее время, и выводит механизм из строя. Плюс ко всему, дизельные двигатели делают слишком много вредных выбросов в атмосферу, что и стало причиной борьбы экологов с данным типом механизма. Само изготовление дизельного двигателя обходится производителям дороже, чем бензинового, что заметно отображается на бюджетных затратах производства.

Эти основные моменты и послужили причиной того, что количество дизельных двигателей в мировом машиностроительстве будет уменьшаться и, с большой долей вероятности, ограничится лишь промышленным автопромом, где дизель является незаменимым агрегатом. Но, именно дизель оставил глубокий след в процессе создания автопромышленности, как таковой, и всегда будет оставаться важнейшим прорывом в мировой автомобильной инженерии.

Ненадежные моторы

Все автомобилисты знают о главном свойстве машин с дизельным мотором: они обычно дороже стоят, зато дешевле в эксплуатации.

К несчастью для Рудольфа Дизеля, его первые модели при всем их высоком КПД отличались ненадежностью. Недовольные покупатели завалили его требованиями о возврате денег. Это и загнало изобретателя в финансовую яму, из которой он не смог выбраться.

Но он продолжал работать над своим двигателем и постепенно совершенствовал его.

Выявились другие преимущества двигателя Дизеля. Он может работать на более тяжелом, чем бензин, топливе — солярке, или, как сейчас его чаще называют, дизтопливе. Оно дешевле бензина и к тому же менее интенсивно испаряется, поэтому менее взрывоопасно.

В силу этого дизели стали особенно популярны у военных. Уже в 1904 году двигатели Рудольфа Дизеля были поставлены на французских подводных лодках.

Правообладатель иллюстрации Getty Images Image caption Машины с дизельным двигателем дороже при покупке, но дешевле в эксплуатации

Здесь лежат корни первой конспирологической версии смерти Рудольфа Дизеля.

Европа, 1913 год, большая война все ближе и все неотвратимее — а тут немец, изобретатель нового двигателя, преследуемый финансовыми проблемами, отправляется в Британию. Одна газета так и написала в заголовке: «Изобретателя сбросили в море, чтобы предотвратить продажу патентов британскому правительству».

Коммерческий потенциал изобретения Дизеля, однако, стал раскрываться только после Первой мировой. Первые дизельные грузовики появились в 1920-х годах, железнодорожные локомотивы — в 1930-х. К 1939 году уже четверть морских грузов в мире перевозили суда с дизельными установками.

После Второй мировой войны были созданы еще более мощные дизельные моторы, которые позволили строить суда все большего водоизмещения и все более экономно перевозить грузы. На топливо приходится около 70% себестоимости морских перевозок.

Особенности запуска

Система зажигания дизельного двигателя состоит из топливного насоса. Этот элемент топливной системы вместе с форсунками проталкивает горючее в камеру сгорания.

Такое конструктивное устройство дизельного автомобиля позволяет эффективно и экономно расходовать топливо.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Следует учитывать, что при низких температурах мотор плохо заводится, поэтому можно воспользоваться запальными свечами. Их требуется включить за несколько секунд до того, как заводят двигатель.

Особенности эксплуатации и обслуживания

Для того, чтобы агрегат работал долго и без перебоев, необходимо обеспечить его правильное обслуживание и эксплуатацию. Особенно это касается его топливной системы.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Требования к маслу

Дизель предъявляет высокие требования к качеству масла. Дизельные двигателя большой мощности предполагают использование смазки класса В2 и выше. Кроме того, требуется строго придерживаться интервала замены.

По европейским нормам масло меняют после 10 тыс. км пробега – в два раза чаще, чем на бензиновых.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Классификация дизельных ДВС

Классифицировать двигатели можно по форме камер. Они отличаются между собой по конструкции, а также типу работы.

Типы дизельных двигателей делятся на:

  1. разделенные – топливо вспрыскивается не сразу в основную, а в предварительную или вихревую камеру, где перемешивается с воздухом. Это обеспечивает максимальное сжатие и равномерное распределение энергии горения. Топливо начинает гореть сначала в предварительной камере, потом постепенно процесс переходит в основную. Таким образом снижается нагрузка на поршневую группу, а звук мотора становится тише.
  2. неразделенные – камера находится непосредственно в поршне, горючее поступает в цилиндры. Несмотря на то, что такая конструкция позволяет снизить расход топлива, но отличается высоким уровнем шума и вибрированием.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger
Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями: